Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2 points] How many subsets of $\{1, 2, \dots, 9\}$ have size 4? Give a numerical answer.

$$\begin{pmatrix} 9 \\ 4 \end{pmatrix} = \frac{9!}{4!(9-1)!} = \frac{9 \cdot \cancel{2} \cdot 7 \cdot \cancel{6} \cdot \cancel{5}!}{\cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1} \cdot \cancel{5}!} = 9 \cdot 2 \cdot 7 = 9 \cdot 14 = (10-1) \cdot 14 = 140 - 14 = 126$$

2. [4 points] Prove that $\sqrt{5}$ is irrational. You may use that if $a \in \mathbb{Z}$ and $5 \mid a^2$, then $5 \mid a$.

Pf: Suppose for a contradiction that $\sqrt{5}$ is rational. Let α and β be integers such that $\sqrt{5} = \frac{a}{6}$, with α and β written in lowest common terms, so that α and β have no common divisors except 1 and -1. We have $\sqrt{5}$ b = α , and so $\sqrt{5}$ b² = α^2 . It follows that $\sqrt{5}$ b², and so $\sqrt{5}$ b = $\sqrt{6}$ contradicting for α , we get $\sqrt{5}$ b² = α^2 = $(5k)^2$ = $\sqrt{5}$ k². Dividing both sides by $\sqrt{5}$ gives $\sqrt{6}$ = $\sqrt{5}$ k². So $\sqrt{5}$ b² and therefore $\sqrt{5}$ b. But now we have $\sqrt{5}$ la and $\sqrt{5}$ lb, contradicting that $\frac{a}{6}$ is in least common terms.

3. [4 points] Use a proof by contradiction to show that if $n \in \mathbb{Z}$, then $4 \nmid n^2 + 2$.

Pf: Suppose for a contradiction that $n \in \mathbb{Z}$ but $4 \ln^2 + 2$. This means $n^2 + 2 = 4k$ for some $k \in \mathbb{Z}$. So $n^2 = 4k - 2 = 2(2k-1)$. Since $2 \ln^2 a$ and n^2 is even, it follows that n is also even (since if n were odd, then n^2 is the result of multiplying a odd number times a odd number, which would make n^2 odd). Since n is even, we have n = 2l for some $l \in \mathbb{Z}$. Substituting into $n^2 = 2(2k-1)$, we get $(2l)^2 = 2(2k-1)$ at $2^2 + 2(2k-1)$, and dividing by 2 + 2(2k-1). Rearranging gives $1 = 2k - 2l^2 = 2(k-l^2)$

implying 2/1. Since 2+1, we have a contradiction. Therefore if nEZ, Then 4+n2+2.