Name: _Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 1 point each] We define the following statements and open sentences.

 $P\colon 5$ is even.

Q(x): x is odd.

R(x): x is negative.

S(A): A is a finite set.

Decide whether the following are true or false; indicate your answer by writing the entire word "true" or the entire word "false". Give brief justifications for partial credit.

(a)
$$\sim P$$
 : "5 is odd"

This is twe, since 5 is an odd integer.

(b)
$$Q(3) \lor \sim P$$
 " (3 is odd) or (5 is odd)",

This is the since at least one of the integers in {3,5} is odd.

$$(\mathrm{d})\ P \implies S(\mathbb{R}) \qquad \text{False} \implies \overline{\text{False}}$$

This is true, since the hypothesis P fails.

$$(e) \sim (R(5) \iff Q(6)) \qquad \text{Not} \ \Big(\ 5 \ \text{is negative} \ \iff \ 6 \ \text{is old} \Big)$$

This is False, since both R(5) a) Q(6) have the same toth

FAISE (TRUE => FAISE)

FALSE S FALSE

TRUE

This statement is true since both $nS(\beta)$ and $R(-i) \Rightarrow O(b)$ are false

- 2. [2 parts, 1 point each] Truth tables and logical equivalence.
 - (a) Write a truth table for $(P \implies Q) \implies P$

P	Q	P=Q	(P > G) >> P
	TT	T	T
Ť	\ F '	F	T
F	\ \	\\ T	F
F	F	\ τ	F

(b) Give a simple statement which is logically equivalent to $(P \implies Q) \implies P$.

- 3. [2 parts, 1 point each] Let P, Q, and R be statements. Use the standard logical operands $\sim, \vee, \wedge, \implies, \iff$ to express the following statements.
 - (a) At least one statement in $\{P, Q, R\}$ is true.

(b) Having exactly one of $\{Q, R\}$ hold is a necessary condition for P.