Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [1 point] Describe the Diffie-Hellman Problem (DHP). What are the inputs to DHP? What is the output to be computed?

- 2. [2 parts, 2 points each] Alice and Bob use ElGamal with p = 83 and g = 2.
 - (a) Alice wishes to generate a private/public key pair. She selects a = 3 as her private key. What is her public key?

$$A = g^{a} = 2^{4} = (2^{4})^{2} = (6^{2})^{2}$$

$$= (4^{5})^{2} = (6^{2})^{2}$$

$$= (6^{3})^{2} = (6^{2})^{2}$$

$$= (6^{3})^{2} = (6^{2})^{2}$$

$$= (6^{3})^{2} = (6^{2})^{2}$$

$$= (6^{3})^{2} = (6^{2})^{2}$$

(b) Bob publishes B=55 as his public key. Alice wishes to send the message m=70 to Alice. She picks the ephemeral key k=10. What ciphertext should she send to Bob?

°
$$C_1 = 9^k = 2^{10} = 1024 = 28$$

° $C_2 = m(8^k) = 70 \cdot (55)^{10}$.
 $(55)^2 = 37$; $(55)^4 = (37)^2 = 41$ $(55)^5 = 55.41 = 14$
 $(55)^{10} = 14.14 = 196 = 30$
° $C_2 = 70.30 = 2100 = 25$. So cipherlex t is $(28, 25)$

- 3. Let p=571 and g=4. Note that the order N of g in \mathbb{F}_{571} satisfies N=57. We wish to compute $\log_g(407)$.
 - (a) [2 points] Compute List 1 in Shanks's algorithm.

$$N = T \sqrt{N} = 8$$
, $g^n = 4^8 = (42^6 = (2^8)^2 = (256)^2 = 442$

2	0	1	2	3	4	5	6	7	8
g 8 i	1	442	82	271	443	524	353	143	396

(b) [2 points] Compute List 2 in Shanks's algorithm. You may stop after thing a dism

J	0	C-manual	2 '	3	4	L5	6	1 7
hgi	407	486	23	353	270	499 509	323	150

(c) [1 point] Use (a) and (b) to find $\log_g(407).$

We see
$$g^{8.6} = 353 = hg^3$$
, so

$$h = g^{8.6-3} = g^{45}$$
. Therefore $log_3(407) = 45$.