Directions: Show all work. No credit for answers without work.

- 1. [4 parts, 4 points each] Solve the following for x exactly. Decimal approximations are worth partial credit.
 - (a) Solve for x in $5^{4x} = 7$.

$$\chi = \frac{\ln(7)}{4\ln(5)}$$

(b) Solve for x in $3 \ln(5 - 2x) = 7$.

$$ln(5-2x)=\frac{7}{3}$$

(c) Let
$$f(x) = (x-2)^2$$
 and $g(x) = -3x + 1$. Find $f(g(-2))$.

$$=g(-2)=-3(-2)+1=7$$

 $f(g(-2))=f(7)=(7-2)^2=25$

- (d) Complete: If f'(x) > 0 for each x in [a, b], then f(x) is increasing on [a, b].
- 2. [4 points] A table for h(x) appears below. Using the average of the left-hand and right-hand estimates, give an approximation for h'(2.4).

LHE:
$$h'(2.4) \approx \frac{31.45 - 29.64}{0.05} \approx 36.2$$
 Estricte:

RHE: $h'(2.4) = \frac{34.39 - 31.45}{0.05} \approx 58.8$ $h'(2.4) \approx \frac{1}{2} (36.2 + 58.8)$

$$f'(2.4) \approx \frac{1}{2} (36.2 + 58.8)$$

$$\approx [47.5]$$

- 3. A company rents compact cars for \$25 a day plus \$0.21 per mile driven and rents pickup trucks for \$48 a day plus \$0.16 per mile driven.
 - (a) [4 points] Give a formula C(x) for the cost (in dollars) of renting a car for 2 days when x miles are driven.

(b) [4 points] Give a formula T(x) for the cost (in dollars) of renting a truck for 2 days when x miles are driven.

(c) [8 points] How many miles must be driven for the cost of a 2-day car rental and a 2-day truck rental to be the same?

$$50+0.21x = 96+0.16x$$

 $0.05x = 46$
 $x = 920$ m.les

- (d) [2 points] What is the marginal cost of driving a mile in the car?
- (e) [2 points] What are the fixed costs of a 2-day truck rental?

- 4. [2 parts, 5 points each] Doug needs to have \$18,000 worth of savings in 12 years. Bank A offers an interest rate of 2% per year, compounded annually. Bank B offers an interest rate of 1.5% per year, compounded continuously.
 - (a) If Doug uses Bank A, how much money should he deposit now?

$$P=P_{o}(1+r)^{\frac{1}{2}}$$
 $P_{o}=\frac{18}{(1.02)^{12}}\approx 14.1929$

Day needs $\boxed{514,193}$ now

(b) If Doug uses Bank B, how much money should he deposit now?

- 5. [2 parts, 5 points each] A cancerous growth of 0.10 grams forms in a patient and grows exponentially. After 3 weeks, the growth has reached a mass of 0.14 grams. The growth is not detectable until it reaches a mass of 0.5 grams.
 - (a) Give a formula M(t) for the mass (in grams) of the growth after t weeks.

$$M = M_0 at$$

$$M = (0.1) at$$

$$0.14 = (0.1) a^3$$

$$0.14 = (0.1) a^3$$

$$0.14 = (0.1) a^3$$

$$0.14 = (0.1) a^3$$

(b) How much time will elapse before the growth is detectable?

$$0.5 = 0.1(1.4)^{t/3}$$

$$t = \frac{3 \ln(5)}{\ln(1.4)}$$

$$5 = (1.4)^{t/3}$$

$$\ln(5) = \frac{1}{3} \ln(...4)$$

$$\approx [14.35] \text{ weeks}$$

6. [6 parts, 3 points each] In each part below, find the derivative of the given graph and write the corresponding number in the provided space. You may use a number more than once. You do not need to show your work.

7. Let $f(x) = 5x^2$.

(a) [10 points] Find the average rate of change of f over the interval [2, 3].

$$ARC = \frac{f(3)-f(2)}{3-2} = \frac{5 \cdot 3^2 - 8 \cdot 2^2}{1} = \frac{5(9-4) - [25]}{2}$$

(b) [10 points] Find the average rate of change of f over the interval [x, x + h].

$$ARC = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{5(x^2 + 2xh + h^2) - 5x^2}{h}$$

$$= \frac{5(x^2 + 2xh + h^2) - 5x^2}{h}$$

$$= \frac{5x^2 + 10xh + 5h^2 - 5x^2}{h}$$

$$= \frac{K(10x + 5h)}{K}$$

(c) [2 points] Using part (b), find f'(x).

$$f'(x) = 1 \text{ fm } ARC \approx 10 \times +5 \text{ (very very small number)}$$

$$= 10 \times 10 \times 10 \times 10^{-10} \text{ (very very small number)}$$

					*: :s
					-
		·			
•					
	•				
·					