Name:

Directions: Show all work. No credit for answers without work.

1. [3 points] Determine if the following vectors form a basis for \mathbb{R}^4 .

$$\begin{bmatrix} -3\\1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 6\\-4\\-1\\6 \end{bmatrix}, \begin{bmatrix} 1\\-6\\-3\\6 \end{bmatrix}, \begin{bmatrix} -8\\1\\0\\-2 \end{bmatrix}$$

2. [3 points] Given the matrix A and an echelon form of A, find a basis for Col(A) and Nul(A).

$$A = \begin{bmatrix} 75 & 383 & -281 & 32 & 329 \\ 10 & 51 & -37 & 4 & 44 \\ 38 & 194 & -142 & 16 & 167 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 & 0 & 6 \\ 0 & 1 & -7 & 4 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

3. [2 points] Let H be the set of vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4$ such that $x_1 + x_2 + x_3 + x_4 = 0$ and $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$. Find a basis for H.

- 4. [2 parts, 1 point each] Subspaces.
 - (a) Let H_1 and H_2 be subspaces of \mathbb{R}^n . Prove that $H_1 \cap H_2$ is also a subspace of \mathbb{R}^n .

(b) Give an example of subspaces H_1 and H_2 of \mathbb{R}^2 such that $H_1 \cup H_2$ is not a subspace.