Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work..

1. [5.3.4] Given the factorization $A = PDP^{-1}$ below, find a formula for A^k where k is a non-negative integer.

$$\begin{bmatrix} -6 & 8 \\ -4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

2. [5.3.{7-20}] Diagonalize the following matrices if possible. That is, for each diagonalizable matrix A below, construct an invertible matrix P and a diagonal matrix P such that $A = PDP^{-1}$. (There is no need to compute P^{-1} explicitly.) For each matrix P below that is not diagonalizable, explain why not.

(a)
$$\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

(b) $\begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$
(c) $\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$
(d) $\begin{bmatrix} 4 & 0 & 2 \\ 2 & 3 & 4 \\ 0 & 0 & 3 \end{bmatrix}$
(e) $\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$

- 3. [5.3.{21-28}] True/False. In the following, A, P, and D are $(n \times n)$ matrices. Justify your answers.
 - (a) A is diagonalizable if $A = PDP^{-1}$ for some matrix D and some invertible matrix P.
 - (b) If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
 - (c) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
 - (d) If A is diagonalizable, then A is invertible.
 - (e) A is diagonalizable if A has n eigenvectors.
 - (f) If A is diagonalizable, then A has n distinct eigenvalues.
 - (g) If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
 - (h) If A is invertible, then A is diagonalizable.
- 4. [5.3.31] A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Justify your answer.
- 5. Let $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$, and let λ_1 and λ_2 be scalars. Construct a (2×2) -matrix A having eigenvectors \mathbf{v}_1 and \mathbf{v}_2 with respective eigenvalues λ_1 and λ_2 . (Here, the entries of A will depend on λ_1 and λ_2 .)