Name: Solution

Directions: Show all work. No credit for answers without work.

1. [2 points] Let $\Sigma = \{0, 1\}$. Determine $|\Sigma^5|$.

- 2. Let $\Sigma = \{0,1\}$ and let A be the language defined recursively as follows:
 - (1) $\lambda \in A$.
 - (2) If $x \in A$, then $0x \in A$.
 - (3) If $x \in A$, then $x1 \in A$.
 - (a) [2 points] List all strings in A of length at most 2.

(b) [1 point] Give a simple, non-recursive description of A.

A = $\{O^T 1^S : \Gamma, S \ge O\}$ or A is the set of strings with some zeros followed by some ones. Or A is the set of strings with all zeros before all ones. or A is the set of strings that do not contain 10 as a substring. (c) [1 point] Give a formula for the number of strings in A of length n.

We Want | {0 k 1 n-k: 0 \ k \ e n 3 |.

This equals [n+1].

- 3. [4 parts, 1 point each] Let $\Sigma = \{0, 1, 2\}$. Let A be the language of all strings over Σ with an equal number of 0's and 1's, and let B be the language of all strings over Σ with an equal number of 1's and 2's. For example, if w = 1202112, then the number of occurrences of 0, 1, and 2 in w is 1, 3, and 3 respectively. Consequently $w \notin A$ and $w \in B$.
 - (a) Give a simple, English description of the language $A \cap B$.

AnB is the language of strings that have equal number of 0's, 1's, and 2's.

(b) Determine the number of strings in $A \cap B$ of length 10.

Every string in ANB has a length that is a multiple of 3. Since 10 is not a multiple of 3, the number of these strings is Do

(c) True or false: if x and y are both in A, then $xy \in A$.

(d) Give an example of a string w over Σ that has length 2 such that $w \in AB$ and $w \notin BA$.

The only such string is [20].

Since 2eA and OEB, we have 20 EAB.

It is easy to check 20 &BA, by examining all 3 ways of splitting 20 into two strings.