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Abstract

A 2-ranking of a graph G is an ordered partition of the vertices of G into independent sets
V1, . . . , Vt such that for i < j, the subgraph of G induced by Vi ∪ Vj is a star forest in which
each vertex in Vi has degree at most 1. A 2-ranking is intermediate in strength between a star
coloring and a distance-2 coloring. The 2-ranking number of G, denoted χ2(G), is the minimum
number of parts needed for a 2-ranking.

For the d-dimensional cube Qd, we prove that χ2(Qd) = d + 1. As a corollary, we improve
the upper bound on the star chromatic number of products of cycles when each cycle has length
divisible by 4.

Let χ′
2(G) = χ2(L(G)), where L(G) is the line graph of G; equivalently, χ′

2(G) is the mini-
mum t such that there is an ordered partition of E(G) into t matchings M1, . . . ,Mt such that
for each j, the matching Mj is induced in the subgraph of G with edge set M1 ∪ · · · ∪Mj . We
show that χ′

2(Km,n) = nHm when m! divides n, where Km,n is the complete bipartite graph
with parts of sizes m and n, and Hm is the harmonic sum 1 + · · · + 1

m . We also prove that
χ2(G) ≤ 7 when G is subcubic and show the existence of a graph G with maximum degree k
and χ2(G) ≥ Ω(k2/ log(k)).

1 Introduction

A path consisting of a single vertex is trivial ; paths with positive length are nontrivial. In a graph
whose vertices are assigned integer ranks, a path is well-ranked if its endpoints have distinct ranks or
some interior vertex has a higher rank than the endpoints. A ranking of a graph G is an assignment
of ranks to V (G) such that every nontrivial path is well-ranked. Graph rankings have arisen in
mathematics and computer science; see the section on rankings in Gallian’s dynamic survey [5] for
a summary of results and background. A k-ranking is a relaxation in which each nontrivial path
of length at most k is well-ranked. The k-ranking number of G, denoted χk(G), is the minimum
number of ranks in a k-ranking of G.

Graph k-rankings were introduced by Karpas, Neiman, and Smorodinsky [6], who used the term
unique-superior coloring for the case k = 2. In our terminology, Karpas, Neiman, and Smorodinsky
proved that the maximum, over all n-vertex trees T , of χ2(T ) is Θ( logn

log logn). Trees are K3-minor-
free; it turns out that the k-ranking number of a graph grows at most logarithmically when some
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minor is excluded. Specifically, Karpas, Neiman, and Smorodinsky show that for each graph H,
there is a constant s such that each n-vertex H-minor-free graph G satisfies χk(G) ≤ s(k+ 1) log n.
A graph G is d-degenerate if each subgraph of G has a vertex of degree at most d. They also prove
that each n-vertex d-degenerate graph G satisfies χ2(G) ≤ d(4

√
n + 1) and construct n-vertex

2-degenerate graphs G with χ2(G) > n1/3.
Graph 2-rankings are intermediate in strength between star colorings, where the vertices of a

graph are partitioned into independent sets with each pair of parts inducing a star forest, and dis-
tance 2-colorings, where the vertices of a graph are partitioned into independent sets with each pair
of parts inducing a graph with maximum degree at most 1. A 2-ranking of a graph G interpolates
between these by giving an ordered partition of V (G) into independent sets V1, . . . , Vt such that for
i < j, the subgraph of G induced by Vi ∪ Vj is a star forest in which each vertex in Vi has degree
at most 1. Consequently, χs(G) ≤ χ2(G) ≤ χ(G2), where χs(G) is the star chromatic number of
G and χ(G2) is the usual chromatic number of the graph obtained from G by joining vertices at
distance 2.

For the d-dimensional cube Qd, Fertin, Raspaud, and Reed [4] proved (d+3)/2 ≤ χs(Qd) ≤ d+1.
Wan [9] proved that χ(Q2

d) = d+1 when d is one less than a power of two, and it is easy to see that
χ(Q2

d) > d + 1 when d does not have this form. In Section 2, we extend a classical linear algebra
technique to show that χ2(Qd) = d+ 1 for all d. A graph is toroidal if it is the cartesian product of
cycles. As a corollary, if G is toroidal graph with d factor cycles, each having length divisible by 4,
then χ2(G) = 2d+ 1. Some assumptions on the cycle lengths are necessary, since in Section 6, we
show that χ2(G) = 6 > 2d+1 when G is the product of C3 and a large odd cycle. The corollary has
implications for the star chromatic number of certain toroidal graphs. Pór and Wood [8] proved
χs(G) ≤ 6d + O(log d) when G is toroidal with d factor cycles (with no restriction on the factor
lengths). Earlier, Fertin, Raspaud, and Reed [4] proved that χs(G) ≤ 2d+ 1 when G is the product
of d cycles, each of whose lengths is divisible by 2d+ 1 (and that χs(G) ≤ 2d2 +d+ 1 in the general
case). When each factor cycle has length divisible by 4, our corollary gives χs(G) ≤ χ2(G) = 2d+1,
improving the upper bound on the star chromatic number in this case.

The line graph of a graph G, denoted L(G), is the graph with vertex set E(G) where e1 and e2
are adjacent in L(G) if and only if e1 and e2 share a common endpoint in G. Let χ′2(G) = χ2(L(G)).
In terms of G, a 2-ranking of L(G) is an ordered partition of E(G) into matchings M1, . . . ,Mt such
that for each j, the matching Mj is induced in the subgraph of G with edge set M1 ∪ · · · ∪Mj . In
Section 3, we study χ′2(Km,n), where Km,n is the complete bipartite graph with parts of sizes m
and n. When m! divides n, we obtain an exact result: χ′2(Km,n) = nHm, where Hm is the harmonic
sum 1 + 1

2 + · · ·+ 1
m . For each fixed m, it follows that χ′2(Km,n) = (1 + o(1))n lnm as n→∞. For

the diagonal case, we obtain only Ω(n log n) ≤ χ′2(Kn,n) ≤ O(nlog2 3). It would be interesting to
find the order of growth of χ′2(Kn) and χ′2(Kn,n).

Problem 1. Determine the order of growth of χ′2(Kn) and χ′2(Kn,n).

It is easy to see that if G has maximum degree k, then χ2(G) ≤ χ(G2) ≤ ∆(G2)+1 ≤ k2+1. In
Section 4, we adapt a probabilistic construction of Fertin, Raspaud, and Reed [4] to obtain graphs
with maximum degree k and 2-ranking number Ω(k2/ log k). In Section 5, we show that subcubic
graphs have 2-ranking number at most 7, and conjecture that aside from a single exception, subcubic
graphs have 2-ranking number at most 5.
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2 The hypercube

The d-dimensional cube, denoted Qd, is the graph with vertex set {0, 1}d where u and v are adjacent
if u and v differ in exactly one coordinate. We prove that χ2(Qd) = d+ 1. The lower bound follows
from a useful proposition. A graph is k-degenerate if every subgraph contains a vertex of degree at
most k. The degeneracy of a graph G is the minimum integer k such that G is k-degenerate.

Proposition 1. If G is a graph with degeneracy k, then χ2(G) ≥ k + 1.

Proof. Since G is not (k−1)-degenerate, G contains a subgraph H with minimum degree at least k.
Consider a 2-ranking of G, and let v be a vertex of minimum rank in H. The ranks of the neighbors
of v in H are distinct, and the rank of v differs from all of these. It follows that χ2(G) ≥ k+ 1.

Since Qd is d-regular, it follows that χ2(Qd) ≥ d + 1. Wan [9] proved that χ(Q2
d) = d + 1

when d = 2k − 1 for some integer k, and it follows that d + 1 ≤ χ2(Qd) ≤ χ(Q2
d) = d + 1 in

this case. Each color class in a proper coloring of Q2
d has size at most

⌊
2d/(d+ 1)

⌋
, and it follows

that χ(Q2
d) ≥ 2d/

⌊
2d/(d+ 1)

⌋
. Therefore χ(Q2

d) > d + 1 when d does not have the form 2k − 1.
Nonetheless, we show that χ2(Qd) = d+1 for all d. Although determining the exact value of χ(Q2

d)
remains open, Österg̊ard [7] proved that χ(Q2

d) = (1 + o(1))d.
We view the vertex set of Qd as Fd

2, the d-dimensional vector space over the finite field F2 with
2 elements. For u ∈ Fd

2, we define the support of u to be the set of coordinates in [d] where u has
value 1. The weight of u, denoted w(u), is the size of the support of u. Note that for all vertices
u, v ∈ Fn

2 , we have that dist(u, v) = w(u− v), where dist(u, v) is the length of a shortest path from
u to v in Qd. For integers i and j, we use [i, j] to denote the interval {i, i+ 1, . . . , j}.

Theorem 2. χ2(Qd) = d+ 1.

Proof. As we have seen, χ2(Qd) ≥ d + 1. We prove the upper bound by induction on d. The
result for d ∈ {0, 1} is trivial, since the vertices may be assigned distinct ranks in the interval [0, d].
Suppose that d ≥ 2, and express d as t+ 2k where k ≥ 1 and 0 ≤ t ≤ 2k − 1. Given u ∈ Fd

2, we let
u− be the vector in Ft

2 consisting of the first t coordinates of u and we let u+ be the 2k-dimensional
vector consisting of the remaining coordinates. If w(u+) is even, then we set the rank of u equal
to the rank in [0, t] assigned to u− inductively.

If w(u+) is odd, then we assign u a rank in the interval [t+ 1, d] as follows. Let A be a (k× d)-
matrix whose first t columns are distinct, nonzero vectors in Fk

2 and whose last 2k columns form a
permutation of Fk

2. Let φ : Fk
2 → [t+ 1, d] be a bijection. When w(u+) is odd, we set the rank of u

to be φ(Au). Ranks in the range [0, t] are low, and ranks in the range [t+ 1, d] are high.
We show that this assignment is a 2-ranking. Let P be a uv-path of length 1 or 2. Note that

w(u− v) equals the length of P . We prove that P is well-ranked by examining several cases.

Case 1. The support of u− v is contained in the first t coordinates.

We have that u+ = v+. If w(u+) and w(v+) are even, then the vertices of P are colored
inductively and so P is well-ranked by induction. Otherwise both w(u+) and w(v+) are odd, and
so u is assigned rank φ(Au) and v is assigned rank φ(Av). Since w(u− v) ∈ {1, 2}, it follows that
A(u − v) is the sum of one or two of the first t columns of A. Since these columns are nonzero
and distinct, we have that A(u − v) 6= 0 and it follows that u and v are assigned different ranks.
Therefore P is well-ranked.
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Case 2. The support of u− v is contained in the last 2k coordinates and dist(u, v) = 1.

Since w(u− v) = dist(u, v) = 1, it follows that w(u+) and w(v+) have opposite parity, implying
that one of {u, v} is assigned a high rank and the other is assigned a low rank.

Case 3. The support of u− v is contained in the last 2k coordinates and dist(u, v) = 2.

We have that w(u+) and w(v+) have the same parity. Let x be the internal vertex on P ,
and note that w(x+) has opposite parity. If both w(u+) and w(v+) are even and w(x+) is odd,
then the endpoints u and v are assigned low rank while x is assigned high rank, and so P is well-
ranked. If both w(u+) and w(v+) are odd, then u has rank φ(Au) and v has rank φ(Av). Since
w(u− v) = dist(u, v) = 2 and the support of u− v is contained in the last 2k coordinates, it follows
that A(u − v) is the sum of two columns from the last 2k columns in A. Since these are distinct,
it follows that A(u− v) 6= 0. Therefore Au 6= Av, and so P is well-ranked.

Case 4. The support of u− v intersects both the first t coordinates and the last 2k coordinates.

We have that w(u+) and w(v+) have opposite parity. Therefore one of {u, v} has high rank and
the other has low rank.

In all cases, P is well-ranked.

The 2-ranking given in Theorem 2 assigns the same low rank to u and v whenever u− = v−

and both w(u+) and w(v+) are even. Consequently, when d ≥ 3, many pairs of vertices at distance
2 share a common rank. When d is one less than a power of two, a proper coloring of Q2

d is a
2-ranking of Qd in which pairs of vertices at distance 2 receive distinct ranks. It follows that when
d ≥ 3 and d has the form 2k− 1, there are non-isomorphic optimal 2-rankings of Qd. The situation
when d has the form 2k may be different. For d ∈ {1, 2}, there is only one optimal 2-ranking of Qd

up to isomorphism. We suspect that Q4 has only one optimal 2-ranking up to isomorphism. Is it
true that Qd has one optimal 2-ranking up to isomorphism when d is a power of two?

The cartesian product of G and H, denoted G�H, is the graph with vertex set V (G)× V (H)
where (u, v) is adjacent to (u′, v′) if and only if u = u′ and vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′.

Corollary 3. If G is the cartesian product of d cycles, each of which has length divisible by 4, then
χs(G) ≤ χ2(G) = 2d+ 1.

Proof. Since G has degeneracy 2d, Proposition 1 implies that χ2(G) ≥ 2d + 1. Note that Q2d is
the cartesian product of d copies of C4. Viewing V (Q2d) as Zd

4, let f : Zd
4 → [2d+ 1] be a 2-ranking

of Q2d. We use f to color G. Let m1, . . . ,md be the cycle lengths of the factors of G, and view
V (G) as {(x1, . . . , xd) : xi ∈ Zmi}. For x ∈ V (G), let x′ be the vertex in Q2d obtained from x by
reducing each coordinate of x modulo 4. We assign x ∈ V (G) the rank f(x′). Since each path in
G of length at most 3 maps to a path in Q2d of the same length whose vertices are assigned the
same ranks as in G, it follows that G inherits the 2-ranking of Q2d.

Let G be the cartesian product of d cycles. Fertin, Raspaud, and Reed [4] proved that d+ 2 ≤
χs(G) ≤ 2d2 + d + 1, and improved the upper bound to 2d + 1 in the case that 2d + 1 divides
the length of each factor cycle. Pór and Wood [8] proved that G admits a proper (6d+O(log d))-
coloring in which each pair of color classes induces a matching and isolated vertices; their result
directly implies that χs(G) ≤ 6d + O(log d). Corollary 3 extends the divisibility conditions under
which it is known that χs(G) ≤ 2d+ 1.
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3 Cartesian products of complete graphs

Recall that χ′2(G) = χ2(L(G)), where L(G) is the line graph of G. In this section, we study
χ′2(Km,n), or, equivalently, χ2(Km�Kn). For each fixedm, we obtain χ2(Km�Kn) asymptotically.
When m = n, our bounds are far apart. A 2-ranking of Km�Kn can be viewed as an (m × n)-
matrix A such that A(i, j) is the rank of (ui, vj) ∈ V (Km�Kn). The condition that paths of length
1 are well-ranked is equivalent to the rows and columns of A having distinct entries. The condition
that paths of length 2 are well-ranked is equivalent to the property that A(i, j) = A(i′, j′) implies
that the opposite corners A(i, j′) and A(i′, j) are larger than A(i, j) and A(i′, j′).

For positive integers a, b, c, d, our first result obtains a 2-ranking of Kac�Kbd from 2-rankings
of Ka�Kb and Kc�Kd.

Proposition 4. χ2(Kac�Kbd) ≤ χ2(Ka�Kb) · χ2(Kc�Kd).

Proof. Let k = χ2(Ka�Kb) and ` = χ2(Kc�Kd). Let A be an (a × b)-matrix with entries in
{0, . . . , k − 1} encoding an optimal 2-ranking of Ka�Kb, and let B be an (c × d)-matrix with
entries in {0, . . . , ` − 1} encoding an optimal 2-ranking of Kc�Kd. We use block operations to
construct a 2-ranking of Kac�Kbd.

Let C be the (ac× bd)-matrix obtained from A and B by replacing each entry A(i, j) in A with
the (c × d)-matrix `A(i, j) + B. It is easy to see that C encodes a 2-ranking of Kac�Kbd. Since
the entries in C belong to {0, . . . , k`− 1}, we have that χ2(Kac�Kbd) ≤ k`.

Proposition 4 may be iterated to obtain upper bounds on χ2(Km�Kn).

Corollary 5. If m and n are powers of 2 with m ≤ n, then χ2(Km�Kn) ≤ nmlog2(3)−1 ≈ nm0.585.

Proof. Observe that

[
1 0
0 2

]
is a 2-ranking witnessing that χ2(K2�K2) ≤ 3. If m = 1, then

χ2(Km�Kn) = n, and so the bound holds. Otherwise, by Proposition 4 and induction, we have

that χ2(Km�Kn) ≤ χ2(Km/2�Kn/2) · χ2(K2�K2) ≤ n
2

(
m
2

)log2(3)−1 · 3 = nmlog2(3)−1.

When m and n are not powers of two, we may apply Corollary 5 to Km′ �Kn′ where m′ and
n′ are the least powers of two larger than m and n, respectively. Since m′ < 2m and n′ < 2n, this
gives χ2(Km�Kn) < 3nmlog2(3)−1 for general m and n. To prove a lower bound on χ2(Km�Kn),
we restrict the number of times that certain ranks can appear.

Lemma 6. In a 2-ranking of Km�Kn, each column of height m contains k ranks which are
assigned to at most k vertices for 1 ≤ k ≤ m.

Proof. Let A be an (m×n)-matrix representing a 2-ranking of Km�Kn, and let x be the jth column
in A. Let R be the set of rows containing the k highest ranks in x, and let S = {A(i, j) : i ∈ R}.
We claim that each rank in S appears only in rows in R. Since each rank appears at most once in
each row, it then follows that each of the k ranks in S is assigned to at most k vertices.

Suppose that A(i, j) = A(i′, j′) where i ∈ R. Since A is a 2-ranking, it must be that A(i′, j) >
A(i, j), which implies that A(i′, j) is among the k highest ranks in x. Therefore i′ ∈ R also. It
follows that each rank in S appears only in rows in R.

Lemma 6 forces a nontrivial number of ranks in a 2-ranking of Km�Kn.
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Theorem 7. We have χ2(Km�Kn) ≥ nHm, where Hm is the harmonic sum 1 + 1
2 + 1

3 + · · ·+ 1
m .

Proof. Let A be an (m× n)-matrix encoding an optimal 2-ranking of Km�Kn, and let ak be the
number of ranks that A assigns to exactly k vertices. Note that χ2(Km�Kn) =

∑m
k=1 ak. We

claim that for 1 ≤ k ≤ m, we have that
∑k

i=1 iai ≥ kn. Indeed,
∑k

i=1 iai counts the number of
vertices in Km�Kn whose ranks appear at most k times in A. By Lemma 6, for 1 ≤ k ≤ m, each
of the n columns in A is associated with k such vertices. Therefore

∑k
i=1 iai ≥ kn as claimed.

Let a1, . . . , am minimize
∑m

i=1 ai subject to the conditions
∑k

i=1 iai ≥ kn for k ∈ [m]. We claim

that in each constraint, equality holds. Indeed, if k is the least integer such that
∑k

i=1 iai > kn,

then we may reduce ak by a positive ε while still satisfying the constraints
∑`

i=1 iai ≥ `n for
1 ≤ ` ≤ k. If we also increase ak+1 by k

k+1ε, then all constraints are satisfied, but we have reduced∑m
i=1 ai by 1

k+1ε, contradicting the minimality of
∑m

i=1 ai.
Since equality holds in all constraints, we conclude ak = n/k for each k and

∑m
i=1 ai = nHm.

When n ≥ m!, Theorem 7 gives the correct order of growth of χ2(Km�Kn). In fact, equality
holds when m! | n.

Theorem 8. If m! | n, then χ2(Km�Kn) = nHm.

Proof. Theorem 7 gives the lower bound. We claim that it suffices to prove χ2(Km�Km!) ≤
(m!)Hm. Indeed, with n = tm!, the general case would then follow from Proposition 4, since
χ2(Km�Kn) ≤ χ2(Km�Km!) · χ2(K1�Kt) = (m!)Hm · t = nHm.

We prove that χ2(Km�Km!) = (m!)Hm by induction on m. For m = 1, the statement is trivial.
Suppose that m ≥ 2 and let A′ be an ((m− 1)× (m− 1)!)-matrix encoding an optimal 2-ranking
of Km−1�K(m−1)!. By shifting the ranks appropriately, let A′1, . . . , A

′
m be copies of A′ that use

disjoint intervals of ranks, starting with rank (m− 1)! + 1. The ranks appearing in A′1, . . . , A
′
m are

high, and the ranks in [(m− 1)!] are low.
We construct an (m ×m!)-matrix A encoding a 2-ranking of Km�Km! as follows. Let Mi be

an (m× (m− 1)!)-matrix such that deleting the ith row of Mi gives A′i and whose ith row contains
each low rank. Let A = [M1 · · ·Mm]. The rows and columns of A have distinct entries. Suppose
that A(i, j) = A(i′, j′). If A(i, j) and A(i′, j′) are both low ranks, then columns j and j′ belong
to distinct blocks of A and so A(i′, j) and A(i, j′) are both high ranks. If A(i, j) and A(i′, j′)
are both high ranks, then columns j and j′ belong to the same block of A and so the opposite
corners have higher rank by induction. It follows that A is a 2-ranking. Since A uses (m− 1)! low
ranks and m · [(m − 1)!Hm−1] high ranks, we have that χ2(Km�Km!) ≤ (m − 1)! + m!Hm−1 =
m!(1/m+Hm−1) = m!Hm.

Using that Hm = (1 + o(1)) lnm, we obtain an asymptotic formula for χ2(Km�Kn) when m
is constant.

Corollary 9. For each positive integer m, we have that χ2(Km�Kn) = (1+o(1))n lnm as n→∞.

Proof. The lower bound follows immediately from Theorem 7. For the upper bound, let n′ be the
least multiple of m! that is at least n. By Theorem 8, we have χ2(Km�Kn) ≤ χ2(Km�Kn′) =
n′Hm ≤ (n+m!)Hm = (1 + (m!)/n) · nHm = (1 + o(1))n lnm.

In the diagonal case, our bounds are far apart. Combining Theorem 7 and Corollary 5 gives
Ω(n log n) ≤ χ2(Kn�Kn) ≤ O(nlog2 3). What is the order of growth of χ2(Kn�Kn)?
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Figure 1: A forbidden configuration in a 2-ranking

4 The 2-ranking number of graphs with maximum degree k

Let G be a graph with ∆(G) = k, where ∆(G) is the maximum degree of G. Since χs(G) ≤
χ2(G) ≤ χ(G2) ≤ ∆(G2) + 1 ≤ k2 + 1, it is interesting to ask for the maximum of χs(G) and
χ2(G) over all graphs G with maximum degree at most k. Fertin, Raspaud, Reed [4] proved that

the maximum of χs(G) over all graphs with maximum degree at most k is at least Ω( k3/2

(log k)1/2
) and

is at most O(k3/2). We make slight modifications to their probabilistic construction to show that
the maximum of χ2(G) over all graphs with maximum degree k is at least Ω(k2/ log k). For each
integer n, let [n] = {1, . . . , n}.
Theorem 10. For each k, there exists a graph G with ∆(G) ≤ k and χ2(G) ≥ Ω(k2/ log k).

Proof. Choose n so that n is even and 2np ≤ k, where p = c(log n/n)1/2 for some constant c to
be chosen later. Since we may assume that k is sufficiently large, we may assume that n is also
sufficiently large. Let G be a random graph chosen from G(n, p). Each vertex in G has expected
degree (n − 1)p, and it is well known (see, for example, [2]) that P(∆(G) ≤ 2np) → 1 as n → ∞.
For each function f : V (G)→ [n/2], let Af be the bad event that f is a 2-ranking of G. Applying
the union bound, we have that P(χ2(G) ≤ n

2 ) = P(
⋃

f Af ) ≤
∑

f P(Af ).
Fix a function f : V (G) → [n/2]. Discarding one vertex from each rank class with an odd

number of vertices, we may partition the remaining vertices into pairs S1, . . . , S` such that both
vertices on Si have the same rank under f . Since at most n/2 vertices are discarded, we have
` ≥ (1/2)(n − n/2) = n/4. Index the pairs so that i ≤ j implies that f(u) ≤ f(v) when u ∈ Si
and v ∈ Sj . For each pair {Si, Sj} with i < j, the probability that G contains some path uwv
such that u, v ∈ Sj and w ∈ Si is at least p2. If this happens, then f is not a 2-ranking since
either f(u) = f(v) = f(w) or f(u) = f(v) > f(w); see Figure 1. Since the paths uwv form
an edge-disjoint family as we range over the pairs {Si, Sj}, it follows that the pairs {Si, Sj} give

independent chances for Af to fail. It follows that P(Af ) ≤ (1 − p2)(
n/4
2 ). For sufficiently large n,

it follows that

P(χ2(G) ≤ n

2
) ≤

∑
f

P(Af ) ≤ (n/2)n(1− p2)(
n/4
2 ) ≤ (n/2)ne−

p2n2

33 =
( n

2nc2/33

)n
.

With c = 6, we have that P(χ2(G) ≤ n
2 ) → 0 as n → ∞. It follows that with probability tending

to 1, we have that ∆(G) ≤ k and χ2(G) > n/2 ≥ c′ k2ln k for some positive constant c′.

5 The 2-ranking number of subcubic graphs

A graph G is subcubic if ∆(G) ≤ 3. The star list chromatic number of G, denoted χ`
s(G), is the

minimum integer t such that if each vertex v in G is assigned a list L(v) of t colors, there is a
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star coloring of G in which each vertex v receives a color from its list L(v). Albertson, Chappell,
Kierstead, Kündgen, and Ramamurthi [1] gave an elegant proof that every subcubic graph G
satisfies χ`

s(G) ≤ 7. It follows that χs(G) ≤ χ`
s(G) ≤ 7 when G is subcubic. Chen, Raspaud, and

Wang [3] proved that every subcubic graph G satisfies χs(G) ≤ 6.
LetG be the 3-regular graph obtained from C8 by joining vertices at distance 4. Fertin, Raspaud,

and Reed [4] proved that χs(G) = 6, and it follows that the result of Chen, Raspaud, and Wang is
best possible.

Here, we show that χ2(G) ≤ 7 when G is subcubic. Since χ2(G) ≥ χs(G) always, the example of
Fertin, Raspaud, and Reed shows that our bound cannot be reduced by more than 1 in the general
case. Nonetheless, we believe the bound can be improved by 2 aside from a single exception; see
Conjecture 12.

An independent set in G is a set of vertices that are pairwise nonadjacent. We use NG(u) for
the set of neighbors of u in G and NG[u] for the closed neighborhood NG(u)∪{u}. When S ⊆ V (G),
we use G[S] for the subgraph of G induced by S. Vertices u and v in a graph G are antipodal if
dist(u, v) = diam(G), where diam(G) is the maximum distance between a pair of vertices in G.

Theorem 11. If G is subcubic, then χ2(G) ≤ 7.

Proof. Let G be a subcubic graph. We may assume that G is connected. Let S be a maximal
independent subset of V (G), and let S = V (G) − S. Since S is maximal, every vertex in G is in
S or has a neighbor in S. We claim that in G2, each vertex v ∈ S has at most 6 neighbors in
S. Indeed, for each u ∈ N(v), let Au = NG[u] − v. Note that |Au ∩ S| ≤ 2, or else NG[u] ⊆ S,
contradicting the choice of S. Since v has at most 3 neighbors, the claim follows.

Therefore ∆(G2[S]) ≤ 6. If G2[S] does not contain a copy of K7, then by Brooks’s theorem,
χ(G2[S]) ≤ 6. Using a proper coloring of G2[S] with colors in [6] and assigning rank 0 to all vertices
in S gives a 2-ranking of G. Indeed, paths of length 1 are well-ranked and G contains no paths of
length 2 joining vertices with nonzero ranks.

Hence we may assume that G2[S] contains a copy of K7. Since G is connected, it follows
that G2[S] is connected. Since G2[S] is connected and has maximum degree at most 6, we have
G2[S] = K7.

This has several implications for the structure of G[S]. First, we claim that every vertex in
G[S] has degree 0 or degree 2. Since each vertex u ∈ S has a neighbor in S, it follows that u has
at most 2 neighbors in G[S]. If the only neighbor of u in G[S] is v, then v has at most 5 neighbors
in G2[S]: at most 2 from each of the neighbors of v in G besides u, and u itself. This contradicts
that G2[S] = K7.

It follows that G[S] is a 7-vertex graph whose components are isolated vertices and cycles. We
claim that each cycle in G[S] has length at least 5. Indeed, suppose that v is in a cycle C in G2[S]
of length at most 4, and let u1 and u2 be the neighbors of v along C. Each neighbor of v in G
contributes at most 2 neighbors of v in G2[S]. Since C has length at most 4, the contributions
of u1 and u2 have nonempty intersection. It follows that v has fewer than 6 neighbors in G2[S],
contradicting that G2[S] = K7.

Suppose that G[S] contains a 5-cycle C, and let x and y be the vertices in G[S] that are not in
C. Let u be a vertex in C. Since u is adjacent to x and y in G2[S], it must be that u is adjacent
in G to a vertex su ∈ S whose other two neighbors in G are x and y. The vertices {su : u ∈ V (C)}
have distinct neighborhoods of size 3 and are therefore distinct. This is not possible, since x and y
would have 5 neighbors in G. Therefore G[S] does not contain a 5-cycle.
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Figure 2: Vertices in S are white and vertices in S are black.

Suppose that G[S] contains a 7-cycle C, and let u be a vertex in C. Since u is adjacent in G2[S]
to the two vertices x and y at distance 3 from u in C, it must be that u is adjacent in G to a vertex
su such that NG(su) = {u, x, y}. Again, the vertices {su : u ∈ V (C)} have distinct neighborhoods
of size 3, and are therefore distinct. This is impossible, since x is adjacent in G to su, sx, and its
two neighbors on C. Therefore, G[S] cannot contain a 7-cycle.

It follows that either G[S] = C6 +K1 or G[S] = 7K1. Suppose that G[S] contains a 6-cycle C
and let x be the isolated vertex. If u is a vertex on C, then u is adjacent in G to a vertex su whose
neighbors are u, x, and the vertex on C antipodal to u. It follows that G is the Petersen graph,
as in Figure 2. Suppose that G[S] = 7K1. It follows that each vertex u in S is adjacent in G to
3 neighbors v1, v2, v3 in S. Moreover, we have

⋃3
i=1NG(vi) = S and NG(vi) ∩ NG(vj) = {u} for

i 6= j. Since G is connected, we have that G is a 3-regular (S, S)-bigraph, and so |S| = |S| = 7. It
follows also that G does not contain a copy of C4, or else some vertex u ∈ S would have neighbors
v1 and v2 with |NG(v1) ∩ NG(v2)| ≥ 2. Since G is a bipartite 3-regular graph on 14 vertices with
girth at least 6, it follows that G is the Heawood graph.

As we have seen, if G is subcubic, then χ2(G) ≤ 7, or G is the Petersen graph, or G is the
Heawood graph. If G is the Petersen graph, then G contains a maximal independent set S of size
4. We may repeat the argument with G[S] having 6 vertices. If G is the Heawood graph, then a
vertex u and the four vertices antipodal to u form a maximal independent set S of size 5. We we
may repeat the argument with G[S] having 9 vertices.

Besides the example of Fertin, Raspaud, and Reed, we are not aware of another subcubic graph
that requires 6 ranks for a 2-ranking. Plausible candidates such as the Petersen graph and the
Heawood graph admit 2-rankings with only 5 ranks.

Conjecture 12. If G is subcubic, then χ2(G) ≤ 6 and equality holds if and only if G is the cubic
graph obtained from C8 by joining vertices at distance 4.

6 The product of a triangle and a cycle

Applied to the product of a pair of cycles, Corollary 3 states that χ2(Cm�Cn) = 5 when m and
n are divisible by 4. In this section, we show that the 2-ranking number of cycle products may
depend on the parity of the lengths of the factors. In particular, we show that for sufficiently large
n, the 2-ranking number of C3�Cn is 5 when n is even and 6 when n is odd. We represent a
2-ranking of C3�Cn with a (3× n)-array A such that A(i, j) is the rank of (ui, vj) ∈ V (C3�Cn).
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Lemma 13. If n ≥ 24, then χ2(C3�Cn) ≤ 6.

Proof. Let n = 4q + r for integers q and r with r ∈ {0, 1, 2, 3}. Since q ≥ 6, we have that
n = 4(q − 2r) + 9r, and so n is a nonnegative integer combination of 4 and 9. We give 2-rankings
of C3�C9 and C3�C4 that can be appended together to give a 2-ranking of C3�Cn.

2 4 0 3 1 0 4 0 5
0 5 1 0 5 2 0 1 3
1 3 2 4 0 3 5 2 4

2 4 0 5
0 5 1 3
1 3 2 4

To see that these are 2-rankings, observe that the vertices assigned rank 0 form an independent
set, and for each positive rank t, the vertices assigned rank t are independent in (C3�Cn)2. Because
both 2-rankings agree on the first two columns and the last two columns, appending the arrays
gives a 2-ranking.

Our upper bound improves for even n.

Lemma 14. If n is even and n ≥ 4, then χ2(C3�Cn) ≤ 5.

Proof. Let n = 4q + 6r for integers q and r with r ∈ {0, 1}. We give 2-rankings of C3�C4 and
C3�C6 which can be appended to give a 2-ranking of C3�Cn.

0 1 0 2
3 2 4 1
4 0 3 0

0 1 3 0 4 2
3 0 4 2 0 1
4 2 0 1 3 0

Regardless of how these arrays are appended, vertices assigned rank 0 form an independent set,
and for each positive rank t, the vertices assigned rank t form an independent set in (C3�Cn)2.

Since C3�Cn has degeneracy 4, it follows that χ2(C3�Cn) ≥ 5 always. When n is odd, our
lower bound improves.

Lemma 15. If n is odd, then χ2(C3�Cn) > 5.

Proof. Suppose for a contradiction that C3�Cn has a 2-ranking A using ranks in [5]. Ranks 4 and
5 are high; the other ranks are low. Note that each high rank appears at most once in every pair of
adjacent columns of A. It follows that at most k vertices are assigned to each high rank. A column
containing all of the low ranks is low, and a column containing all of the high ranks is high. Since
A has 2k + 1 columns and at most 2k vertices have high rank, it follows that some column of A is
low.

It is easy to check that χ2(C3�P2) ≥ 5. It follows that a column adjacent to a low column
must be high. Since high ranks cannot appear in adjacent columns, a column adjacent to a high
column must be low. Therefore the columns of A alternate high and low cyclically, contradicting
that n is odd.

Collecting the lemmas, we obtain the following theorem.

Theorem 16. If n is odd and n ≥ 25, then χ2(C3�Cn) = 6. If n is even and n ≥ 6, then
χ2(C3�Cn) = 5.

It would be interesting to find the 2-ranking number of Cm�Cn for general m and n.
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