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edges E(G) are assigned
Vi colors from a set C. Let
f : E(G) — C denote the
coloring.

@ LetW beawalkinG. The
parity vector ¢ (W) records,
for each c € C, the parity of
the number of times W

Vg — vy traverses an edge with color c.

V2 V5

@ We also abuse notation and
use 7¢(W) as the set of colors
that appear an odd number of
times in W
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Hypercubes and Parity Walks

Notation

If Wy is a uv-walk and W, is a vw-walk, then W, W is the
uw-walk given by the concatenation of W, and W,. Similarly,
W, is the vu-walk obtained by reversing W;.

Definition
The hypercube Qy is the graph with vertex set {0, 1} with an
edge between u and v iff u and v differ in 1 coordinate.

| \
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Theorem (Havel, Movarek (1972))

Let G be a connected graph. G is a subgraph of Qy iff there is
an edge-coloring of G using at most k colors such that

YW W is a parity walk <= W is closed
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(=). Color an edge e in G according to the coordinate of Qg
that e crosses.
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Hypercubes and Parity Walks

Proof.

(«<=). Fix such an edge-coloring, let r be a vertex in G, let T be
a spanning tree of G, and for each vertex u, let P, be the ru-path
in T. We define an embedding ¢ : V(G) — V(Qx) via

¢(u) = m(Pu).

@ ¢ is injective: If p(u) = ¢(v), then PyPy is a parity walk and
hence closed, sou =v.

@ ¢ respects edges: Let uv € E(G). Then P Pyvu is closed
and hence a parity walk. It follows that ¢(u) and ¢(v) differ
only in the coordinate indexed by the color on uv.
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Hypercubes and Parity Walks

Theorem (Havel, Movarek (1972))

Let G be a connected graph. G is a subgraph of Qy iff there is
an edge-coloring of G using at most k colors such that

YW W is a parity walk <= W s closed

Definition
A strong parity edge-coloring (spec) is an edge-coloring such
that

YW W is a parity walk = W s closed

o

@ In any edge-coloring of a tree, every closed walk is a parity
walk.
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Hypercubes and Parity Walks

Theorem (Havel, Movarek (1972))

Let G be a connected graph. G is a subgraph of Qy iff there is
an edge-coloring of G using at most k colors such that

YW W is a parity walk <= W s closed

Definition
A strong parity edge-coloring (spec) is an edge-coloring such
that

YW W is a parity walk = W s closed

Corollary

Atree T is a subgraph of Qy iff there is a spec of T using at
most k colors.

|| \
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How Many Colors?

Definition
The strong parity edge chromatic number p(G) is the least k
such that G has a spec using only k colors.

@ First inequalities: A(G) < x/(G) < p(G) < |[E(G)|

@ Monotonicity: H C G = p(H) < p(G)

@ Adding edges: if G — e is connected, then
P(G) <p(G-e)+1

@ Trees: p(T) is the least k such that T C Qy

@ Hypercube lower bound: if G is connected and T is any
spanning subtree, then p(G) > p(T) > [lgn(G)]

@ Paths: p(Pn) = [lgn]

@ Even cycles: p(Can) = [lg 2n]

@ Odd cycles: p(Copp1) =7
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What is p(C,) when n is odd?

We show p(P2n) < p(Chn).
/ 4 @ Fix a spec on Ch,.
4 @ Color Py, by “unrolling” the
cycle.
\ @ Walks in P, “lift” to walks in
C, with the same parity vector.

@ Open walks that lift to open
walks are okay.
| @ Open walks that lift to closed
walks have odd length.

I O

v
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What is p(Kn)?
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AN

If n = 2%, then p(Kp) =n — 1.
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> 1
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Main Theorem

p(Kn) =29 1

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn1)-

@ Strategy: add vertex, color new edges without introducing
an open parity walk.

@ We have a lot to worry about.
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Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

(=).
@ Let W’/ be an open parity

uv-walk
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Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

(=)
@ Let W be a closed walk with
(W) = {Ill}

Kn
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Lemma (Spec Characterization)

Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

(=)
@ Let W be a closed walk with
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@ Let vu be an edge in W of

color |l

Kn




Cliques
00®000000

Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

(=)
@ Let W be a closed walk with
(W) = {ll}
¥y @ @ Let vu be an edge in W of
color |l

@ Let W’ be the uv-walk
Kn obtained by removing vu




Cliques
00®000000

Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

(=)
@ Let W be a closed walk with
(W) = {ll}
@ Let vu be an edge in W of

color |l
@ Let W’ be the uv-walk
Kn obtained by removing vu

@ W’ is an open parity walk

L]
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Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

@ Augmentation only worries
about introducing closed walks
W with [7(W)| =1

Kn
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Spec Characterization Lemma

Lemma (Spec Characterization)

Fix an edge-coloring of K,. There is an open parity walk iff
there is a closed walk W with |7(W)| = 1.

@ Augmentation only worries
about introducing closed walks
W with [7(W)| =1
u —— v @ Linear algebra means we can
worry even less!

Kn
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Let f be an edge-coloring of a connected graph G. The parity
space of f is
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L; is a linear subspace of IF';.
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The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity
space of f is
Ly = {m(W) : W is closed.

L; is a linear subspace of IF';.

—
@ LetW =u.7(W)= 0 € L¢
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The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity
space of f is

Ly = {m(W) : W is closed.

L; is a linear subspace of IF';.

@ Let Wy, W5 be closed walks

O (D
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The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity
space of f is
Ly = {m(W) : W is closed.

L; is a linear subspace of IF';.
P
/\ @ Let Wy, W, be closed walks
/ \‘ ‘/ \ @ Let P be a path from W, to W,
NN

Wy W5
G
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The Parity Space

Proposition

Let f be an edge-coloring of a connected graph G. The parity
space of f is
Lf = {m(W) : W is closed.

L; is a linear subspace of IF';.

@ Let Wy, W5 be closed walks

@ Let P be a path from W, to W,

@ LetW = W;PW,P

@ (W) =n(W1)+ m(W2) € L¢
L]
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Let f be an edge-coloring of a graph G with a dominating vertex
v. Then
{n(T) : T is atriangle containing/ }

is a basis for L.
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Proof (sketch).

~ N @ Let W be a closed walk
l \ @ W decomposes into cycles
v @ Cycle not containing v as sum
\ of triangles
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i @ Cycle not containing v as sum

\ / of triangles

@ Cycle containing v as sum of
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Let f be an edge-coloring of a graph G with a dominating vertex
v. Then
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@ Let W be a closed walk
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v. Then
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/I @ Let W be a closed walk
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Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex
v. Then
{n(T) : T is atriangle containing/ }

is a basis for L.

@ Augmentation only worries
about triangles at v

" 'd
VAV

G
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Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex
v. Then
{n(T) : T is atriangle containing/ }

is a basis for L.

- @ Augmentation only worries
about triangles at v

/ v / \ @ Attack from other direction
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A Parity Space Basis

Lemma (Parity Space Basis)

Let f be an edge-coloring of a graph G with a dominating vertex
v. Then
{n(T) : T is atriangle containing/ }

is a basis for L.

- @ Augmentation only worries
about triangles at v
/ v / \ @ Attack from other direction
@ Argue K, has a rich parity
\ / space, before augmentation

G
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{Il. ;. there is a third color J&] and a closed walk W with

7T(W) = {.v.v c }
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color d to form coloring g

@ g is not a spec

Kn L]




Cliques
000008000

Triple Color Lemma

Lemma (Triple Color Lemma)

Let f be a minimum spec of K,,. Then for every pair of colors
{Il. ;. there is a third color & and a closed walk W with

W(W) = {.7.7 c }

e Collapse [jij and [Bl to new
u v color d to form coloring g

@ g is not a spec
@ Let W’ be a parity uv-walk
Kn L]
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Lemma (Triple Color Lemma)

Let f be a minimum spec of K,,. Then for every pair of colors
{Il. ;. there is a third color & and a closed walk W with

W(W) = {.7.7 c }

® mg(W’)

I
=
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{Il. ;. there is a third color & and a closed walk W with

W(W) = {.7.7 c }

o 7rg(W') 1]
u v o m(W) = {Ill.
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Lemma (Triple Color Lemma)

Let f be a minimum spec of K,,. Then for every pair of colors
{Il. ;. there is a third color & and a closed walk W with

W(W) = {.7.7 c }

u v o m(W') = (Il I}
@ Let/€ =f(uv), letW =W'wvu

Kn L]
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Lemma (Triple Color Lemma)

Let f be a minimum spec of K,,. Then for every pair of colors
{Il. ;. there is a third color & and a closed walk W with

W(W) = {.7.7 c }

() 7rg(W') =0
u v o m(W') = (Il I}
@ Let/€ =f(uv), letW =W'wvu
o B¢ (MM
Kn ]
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Uniqueness of Perfect Specs of K,

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn1)-

A spec of G is perfect if it uses A(G) colors. If f is a perfect
spec of Ky, then n is a power of two and f is the canonical
coloring.

Proof (sketch).

Starting with a single vertex, the proof finds larger and larger
canonically colored subgraphs of K, inductively. Ol
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Uniqueness of Perfect Specs of K,

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn1)-

A spec of G is perfect if it uses A(G) colors. If f is a perfect
spec of Ky, then n is a power of two and f is the canonical
coloring.

@ If n is not a power of two, each vertex misses a color
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Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn41).

Y

@ Choose a vertex v

@ Because n is not a power of two, v is
not incident to some color i

@ Introduce a new vertex u. Color uv

with [l
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@ Choose another vertex w. How do
we color uw?

° Let.:f(vw)
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@ Choose another vertex w. How do
we color uw?

° Let. = f(vw)
@ By Triple Color Lemma, there is a
closed walk W with

V—W (W) = {.7.7 cl}.
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Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn41).

Y

@ Choose another vertex w. How do
we color uw?

° Let. = f(vw)
@ By Triple Color Lemma, there is a
closed walk W with

V—W (W) = {.7.7 cl}.

@ Color uw with fel.
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Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn41).

Y

@ Choose another vertex w. How do
we color uw?

° Let. = f(vw)
@ By Triple Color Lemma, there is a
closed walk W with

V—W (W) = {.7.7 cl}.

@ Color uw with fel.

@ Let g be the coloring of Ky, 1.
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Lemma (Augmentation)
If n is not a power of two, then p(Ky) = p(Kn41).

Y
@ We show that g is a spec.
@ By Spec Characterization Lemma, it
suffices to show that Ly C L;.

@ By Basis Lemma, it suffices to show,
for each triangle T containing v,
vV —w mg(T) € Ls.
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Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn41).

Y

@ We show that g is a spec.

@ By Spec Characterization Lemma, it
suffices to show that Ly C L;.
@ By Basis Lemma, it suffices to show,
for each triangle T containing v,
V —m8Mw mg(T) € Ls.
@ Ifu¢gT,then ng(T) =m(T) € L.
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Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn41).

Y

@ Otherwise, T = uvwu for some w in
Kn and mg(T) = (W) € L; for
some closed walk W by definition of
g.
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Augmentation Lemma

Lemma (Augmentation)

If n is not a power of two, then p(Ky) = p(Kn41).

Y

@ Otherwise, T = uvwu for some w in
Kn and mg(T) = (W) € L; for
some closed walk W by definition of
g.

@ Hence, g is a spec.
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An Application
@ Letf(Xy,...,Xx) be afunction from sets to sets.
@ A patternis a subset S C [k].
@ Givenaand A4, ...,A, we say that a matches S if, for all i,
achA < ieS.
@ f is a boolean function if there exists a collection of
patterns S such that for alla and A4, . .., Ay,

acf(Ay,...,Ax) < IS €S amatches.

@ We say that f is a nontrivial boolean function if
1<|8) <2k —1.

Symmetric difference f(x1,X2) = X3 A Xz is a nontrivial boolean
function: S = {{1},{2}}.
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An Application

Theorem (Daykin, Lovasz (1974))

Let f be a nontrivial boolean function and let F be a family of n
finite sets. Then

{F(AL,...,Aq) : Vi A € F}| > n.
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An Application

Theorem (Daykin, Lovasz (1974))

Let F be a family of n finite sets, and let
g= {A]_ A A A 75 Ao andAl,Az S .7:} 5

Then |G| > n — 1. If n is not a power of two, then |G| > n.

Quotation (with changes in notation)

“The example where F is all subsets of a [finite set] show that
the theorem is best possible. Closer examination of the proof
shows that if |G| = n — 1 then F is very similar to the former
example, but details are omitted.”
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An Application

Let F be a family of n finite sets, and let
g= {Al A A A 75 Ao andAq, A; € f} .

Then |G| > 2Ml9nl — 1,
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An Application

Corollary

Let F be a family of n finite sets, and let
g= {Al A A A 75 Ao andAq, A; € f} .

Then |G| > 2Ml9nl — 1,

| \

Proof.

View F as the vertex set of K,. Coloring an edge A;A, with the
symmetric difference of A; and A,, we obtain a spec of K,
using only colors from G. The bound on |G| follows. O
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Tournaments

Proposition

If T is an n-vertex tournament, then p(T) > [lgn].

@ What is the maximum of p(T) when T is an n-vertex
tournament?

@ Isit O(logn)?
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Graph Products

Proposition
P(GOH) < p(G) +p(H)
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Graph Products

Proposition
P(GOH) <p(G) +p(H)

@ For which graphs G, H does equality hold?

@ Does it hold for all graphs?
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@ What is p(Kmn)? Is the upper bound tight?

@ Does p(Knn) = 2912 Note: p(Kss) = 8 and
b\(K97g) € {14,15,16}.
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What is p(Kmn)?

Letm < nand m’ = 2'9ml Then

Further,

@ What is p(Kmn)? Is the upper bound tight?

@ Does p(Knn) = 2912 Note: p(Kss) = 8 and
6(K979) € {14,15,16}.

@ Lower bounds apply to [{A1 A Az : Ay € F1, Ay € Fo}| with
m = |F1| and n = | F,|.
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@ A spec forbids an open parity walk

@ A parity edge-coloring only forbids an open parity path
@ The parity edge chromatic number p(G) is the least
number of colors needed for a parity edge-coloring.

4

@ Does p(Ky) = 29" Note p(Ks) = 7 and p(Ko) = 15.
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(Regular) Parity Edge-Colorings

@ A spec forbids an open parity walk

@ A parity edge-coloring only forbids an open parity path
@ The parity edge chromatic number p(G) is the least
number of colors needed for a parity edge-coloring.

@ Does p(Ky) = 29" Note p(Ks) = 7 and p(Ko) = 15.

@ In general, p(G) # p(G). Does equality hold for all bipartite
graphs?

v
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Stability of the Canonical Coloring

Question (Dhruv Mubayi)

Is there a (strong) parity edge-coloring of Ko« which uses only
(1 + 0(1))2X colors but is “far” from the canonical coloring?
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@ Many other open problems in our paper.
@ Thank You.
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