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This subtree contains 3 path labels, so f(T) < 3.
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> Let T be a {0,1}-edge-labeled perfect ternary tree of depth n.

» Each path from the root to a leaf gives a path label in {0,1}".

> Let f(T) be the min., over all perfect binary subtrees S C T
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In fact, f(T) =2.

> Let T be a {0,1}-edge-labeled perfect ternary tree of depth n.

» Each path from the root to a leaf gives a path label in {0,1}".

> Let f(T) be the min., over all perfect binary subtrees S C T
of depth n, of the number of path labels along paths in S.

> Let f(n) be the max., over all {0, 1}-edge-labeled perfect
ternary trees T of depth n, of f(T).

» From now on, all trees are perfect and {0, 1}-edge-labeled; all
subtrees have full depth.
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Main Result

Theorem
There exist positive constants ¢; and ¢ such that

n—3

273 < f(n) < Clznfczﬁ_

Corollaries
. f(n)
> n||—>n<lo on 0

> 1.54856 ~ 273 < lim (f(n))¥/" <2
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Preliminaries

Proposition
If r and s are non-negative integers, then f(r + s) > f(r)f(s).

Proof.

» Let R be a ternary tree of depth r which
maximizes f(R).

> Let S be a ternary tree of depth s which

R

maximizes f(S).

Attach a copy of S to each leaf of R.
e Every binary subtree contains at least

f(r)f(s) path labels.

v

v

[
Corollary

lim (F(n))Y" = sup {(f(n))l/" | n> 1}
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» To obtain a lower bound on f(n), we construct a ternary tree
in which every binary subtree has many path labels.

» The construction uses two different kinds of trees.
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Lower Bound: Construction of R,

Proposition

Let ap =1 and a, = [3a,—1/2] for n > 0. If n > 0, then there
exists a ternary tree R, of depth n in which each path label occurs
at most a, times.

Remark
The trees R, are best possible: in each ternary tree of depth n,
some path label occurs at least a, times.

Corollary
If n > 0, then there exists a ternary tree R, of depth n in which
each path label occurs at most 2 (%)n times.
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> For each bitstring y, let Q, be the ternary tree labeled so that
all paths in Q, have the same path label y.
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Lower Bound

Lemma
Ifm>0ands=[lg2 (%)mw then f(m+s) > 2.
Proof.
» Take a copy of R,,. Each path label occurs
at most 2 (%)m times.
» Fix x € {0,1}™ and let Ly be the set of
leaves in R, that are endpoints of a path
with path label x.
Rm » For each u € Ly, arbitrarily choose a distinct
bitstring y(u) € {0,1}".
» Because |Ly| <2 (%)m < 2%, enough
Qoo Qo1 \ [ Quo bitstrings are available.

> At each u € Ly, attach a copy of Q).

» Repeat for each x € {0,1}™.
L]
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Lemma
Ifm>0ands=[lg2 (%)mw then f(m+s) > 2.

Theorem s
If n>0, then f(n) > 273,

Proof (sketch).

Either n or n — 1 is of the form m + [|g2 (%)m] for some integer
m, in which case the Lemma applies. ]

Corollary

lim (F(n))Y" > 253 ~ 1.54856
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path labels.
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path labels.

» Upper bound uses several lemmas.
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Upper Bound: Orthogonal Partitions

» Let T be a finite ground set.

Definition

» A pair of partitions {X, X} and {Y, Y} of T is a-orthogonal
if all four of the cross intersections XNY, XNY, XNY, and
X N'Y have size at least oz%.

» A family of partitions F of T is a-orthogonal if each pair of
(distinct) partitions in T is a-orthogonal.
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Upper Bound: Orthogonal Family Lemma

Lemma (Orthogonal Family Lemma)

If|T| =t and 0 < o < 1, then there exists an a-orthogonal family
of partitions F of T with

o2
|F| > \‘\fe(lls) tJ .

Proof (sketch).
e
> Let r = {‘?e(l = tJ.

» For each 1 < j <r, choose a subset X; C T uniformly and
independently at random.

> Let F={{X;, X} [1<j<r}
» Chernoff bound: F is a-orthogonal with positive probability.

O
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Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with

| F| > 2k=1, then there exists binary subtrees S, Sy, ..., S, with
S; C T; such that

) . aN Ap
{x € T | x is a path label in some S;}| < (1 - Z> 2",
Proof.

T 5 T 7\ (a5 » Consider a ptn. {Xi, X1} € F.

» Color a leaf uin T; red if the path
label ending at v is in X1, and blue
otherwise.

» Apply Monochromatic Subtree

Lemma.
O
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Lemma (Binary Subtrees Lemma (1))
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Let Ty, T,,.
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Proof.
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T4

T

T2
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T3
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Lemma (Binary Subtrees Lemma (1))
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> F is large, so some pair {X, X}
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Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with
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Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with

| F| > 2k=1, then there exists binary subtrees S, Sy, ..., S, with
S; C T; such that

{x € T | x is a path label in some S;}| < (1 - %) 2",

Proof.

A n\ /1\ A1\ xx; > If Tjis red under {X, X}, then T;
has a binary subtree S; in which
every path label is in X.

T T2 T3 T4 {Y,Y}




Upper Bound: Binary Subtrees Lemma (1)

Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with

| F| > 2k=1, then there exists binary subtrees S, Sy, ..., S, with
S; C T; such that

. , aN Ap
{x € T | x is a path label in some S;}| < (1 - Z> 2",
Proof.
A .\ (x,x3 » If Tjisred under {X, X}, then T;
ii ‘ ‘ ‘ has a binary subtree S; in which
R every path label is in X.
» If T; is blue under {Y, Y}, then T;

has a binary subtree S; in which
every path label is in Y.

O



Upper Bound: Binary Subtrees Lemma (1)

Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with

| F| > 2k=1, then there exists binary subtrees S, Sy, ..., S, with
S; C T; such that

) . aN Ap
{x € T | x is a path label in some S;}| < (1 - Z> 2",
Proof.

7\ (x.x; » Every path label in each 5; is in

A\ /- /)
AAAA - XUY.




Upper Bound: Binary Subtrees Lemma (1)

Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with

| F| > 2k=1, then there exists binary subtrees S, Sy, ..., S, with
S; C T; such that

) . aN Ap
{x € T | x is a path label in some S;}| < (1 - Z> 2",
Proof.

7\ (x.x; » Every path label in each 5; is in

A L !
XUY.
AAAA YY) Set of path labels in {51,...,5;}

and X N'Y are disjoint.




Upper Bound: Binary Subtrees Lemma (1)

Lemma (Binary Subtrees Lemma (1))

Let Ty, Ta,..., Tk be ternary trees of depth n and let T = {0,1}".
If there exists an a-orthogonal family of partitions F of T with

| F| > 2k=1, then there exists binary subtrees S, Sy, ..., S, with
S; C T; such that

{x € T | x is a path label in some S;}| < (1 — %) 2",
Proof.
7\ (x.x; » Every path label in each 5; is in

A L !
XUY.
AAAA YY) Set of path labels in {51,...,5;}

and X N'Y are disjoint.
> F is a-orthogonal: [X N Y| > $2".

O



Upper Bound: Binary Subtrees Lemma (2)

Setting @ = 1/2 in the Orthogonal Family Lemma and applying
the Binary Subtrees Lemma (1) yields:



Upper Bound: Binary Subtrees Lemma (2)

Setting @ = 1/2 in the Orthogonal Family Lemma and applying
the Binary Subtrees Lemma (1) yields:

Lemma (Binary Subtrees Lemma (2))

Let T1,..., Tx be ternary trees of depth n > 6 + Ig k, and let
T = {0,1}". There exist binary subtrees Sy,...,S, with S; C T;
such that

{x € T | x is a path label in some S;}| < <;) on.



Upper Bound: Binary Subtrees Lemma (2)

Setting @ = 1/2 in the Orthogonal Family Lemma and applying
the Binary Subtrees Lemma (1) yields:
Lemma (Binary Subtrees Lemma (2))

Let T1,..., Tx be ternary trees of depth n > 6 + Ig k, and let
T = {0,1}". There exist binary subtrees Sy,...,S, with S; C T;
such that

{x € T | x is a path label in some S;}| < <;) on.

The assumption n > 6 + Ig k is tight up to an additive constant.
Indeed, if kK =2":

PEIN LN PN PN
A A A AN AN N AR A AR AN AN AN

Qoo Qo1 Q10 Qu1



Upper Bound

Theorem
Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,



Upper Bound

Theorem

Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,

Proof (sketch).

» Let T be a ternary tree with depth n.




Upper Bound

Theorem

Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,

Proof (sketch).

» Let T be a ternary tree with depth n.

» Let T’ be the ternary subtree of T up to
depth m ~ n— c1/n.




Upper Bound

Theorem
Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,

Proof (sketch).

» Let T be a ternary tree with depth n.
» Let T’ be the ternary subtree of T up to
depth m ~ n— c1/n.
» Obtain a binary subtree S’ C T’ that uses
T! few path labels.




Upper Bound

Theorem

Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,

Proof (sketch).

» Fix x € {0,1}™ and let Ly be the set of
leaves in S’ that are endpoints of a path
with path label x.




Upper Bound

Theorem
Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,

Proof (sketch).

> Fix x € {0,1}™ and let L, be the set of
leaves in S’ that are endpoints of a path
with path label x.

» Two cases: if L, is large, then extend S’
at vertices in L, arbitrarily.




Upper Bound

Theorem
Let ¢c; = \/Ig(16/15) ~ 0.3051 and ¢, = 21V540-1 ~ 68.156. If
n >0, then f(n) < 2=V,

Proof (sketch).

» Fix x € {0,1}™ and let Ly be the set of
leaves in S’ that are endpoints of a path
with path label x.
» Two cases: if L, is large, then extend S’
T at vertices in L, arbitrarily.
» If L, is small, apply Binary Subtrees
T Lemma (2) to extend S’ at vertices in Ly.

O



Summary & Open Problems

Theorem
There exist positive constants c¢; and ¢, such that

2% < f(n) < 2V,

Corollary

1.54856 ~ 273 < lim (f(n))Y/" < 2.

n—oo
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Open Problems

» Improve the bounds on f(n) and lim,_.(f(n))¥/".



Summary & Open Problems

Theorem
There exist positive constants c¢; and ¢, such that

2% < f(n) < 2V,

Corollary

1.54856 ~ 273 < lim (f(n))Y/" < 2.

Open Problems
» Improve the bounds on f(n) and lim,_(f(n))*/".
> Is it true that lim, .. (f(n))Y/" < 27



Summary & Open Problems

Theorem
There exist positive constants c¢; and ¢, such that

2% < f(n) < 2"V,

Corollary

1.54856 ~ 273 < lim (f(n))Y/" < 2.

n—oo

Open Problems

» Improve the bounds on f(n) and |im,7_>oo(f(n))1/”.

> Is it true that lim, ..o (f(n))Y/" < 27

» For each p < g, consider the analogous problem on
{0,1,..., p — 1}-edge-labeled perfect g-ary trees. Nothing is
known except our results for (p, q) = (2,3).
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