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» Algorithm permanently assigns x to a chain.

Definition
The least k such that Algorithm has a strategy to partition posets
of width w into at most k chains is val(w).

Theorem
» (Kierstead (1981)): val(w) < 5W4_1
Szemerédi): val(w) > (W;I)

>
» (Bosek-Krawczyk (2010+)): val(w) < witlew
2

Bosek et al. (2010+)): val(w) > (2 — 0(1))(W;rl)
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» One simple strategy for Algorithm: First-Fit.
» First-Fit puts x in the first possible chain.

Example (Kierstead)
First-Fit uses arbitrarily many chains on posets of width 2.

» When P has additional structure, First-Fit does better.

Definition
An interval order is a poset whose elements are closed intervals on
the real line such that [a, b] < [c, d] if and only if b < c.

Example
— |

An Interval Order P Hasse Diagram of P
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Definition
The least k such that First-Fit partitions interval orders of width w
into at most k chains is FF(w).

Theorem (Upper Bounds)
» (Woodall (1976)): FF(w) = O(w log w)
> (Kierstead (1988)): FF(w) < 40w
> (Kierstead—Qin (1995)): FF(w) < 25.8w
» (Pemmaraju-Raman—Varadarajan (2003)): FF(w) < 10w
» (Brightwell-Kierstead—Trotter (2003; unpub)):
FF(w) < 8w
» (Narayansamy—Babu (2004)): FF(w) < 8w — 3
» (Howard (2010+)): FF(w) < 8w — 4



First-Fit on Interval Orders

Definition
The least k such that First-Fit partitions interval orders of width w
into at most k chains is FF(w).

Theorem (Lower Bounds)
» (Kierstead—Trotter (1981)): There is a positive € such that
FF(w) > (3 + ¢)w when w is sufficiently large.
» (Chrobak-Slusarek (1990)): FF(w) > 4w — 9 when w > 4.
» (Kierstead—Trotter (2004)): FF(w) > 4.99w — O(1).

» (D. Smith (2009)): If € > 0, then FF(w) > (5 — ¢)w when
w is sufficiently large.
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Theorem (Fishburn (1970))

» The poset r + s is the disjoint union of a
‘ ‘ chain of size r and a chain of size s.
» A poset P is an interval order if and only
if P does not contain 2 + 2 as an induced
subposet.

N
e
IN

Theorem (Bosek—Krawczyk—-Szczypka (2010))

If P is an (r + r)-free poset of width w, then First-Fit partitions P
into at most 3rw? chains.

Question (Bosek—Krawczyk-Szczypka (2010))
Can the bound be improved from O(w?) to O(w)?



Our Result

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.



Our Result

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.



Our Result

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.

» A group is a set of elements of P inducing a subposet of
height at most r — 1.



Our Result

Theorem
Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.

» A group is a set of elements of P inducing a subposet of
height at most r — 1.

» A society (S, F) consists of a set S of groups and a friendship
function F.



Our Result

Theorem
Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.
» A group is a set of elements of P inducing a subposet of
height at most r — 1.

» A society (S, F) consists of a set S of groups and a friendship
function F.

» Each group has t slots for friends, where t = 2(s — 1).

X \ \ \ \ \




Our Result

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.

» A group is a set of elements of P inducing a subposet of
height at most r — 1.

» A society (S, F) consists of a set S of groups and a friendship
function F.

» Each group has t slots for friends, where t = 2(s — 1).

X \ | \ \

1 2 3 k t

» If X lists Y as a friend in the kth slot, then F(X, k) =Y.



Our Result

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.

» A group is a set of elements of P inducing a subposet of
height at most r — 1.

» A society (S, F) consists of a set S of groups and a friendship
function F.
» Each group has t slots for friends, where t = 2(s — 1).
X:| | | | L Y | | | |
1 2 3 k t

v

If X lists Y as a friend in the kth slot, then F(X,k) =Y.
If X's kth slot is empty, then F(X, k) = .

v



Our Result

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

> Let P be an (r + s)-free poset.

» A group is a set of elements of P inducing a subposet of
height at most r — 1.

» A society (S, F) consists of a set S of groups and a friendship
function F.
» Each group has t slots for friends, where t = 2(s — 1).
Xt | | | | L Y | | * | |
1 2 3 t

v

If X lists Y as a friend in the kth slot, then F(X,k) =Y.
If X's kth slot is empty, then F(X, k) = .

v
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» Let (3,..., Cy, be a chain partition produced by First-Fit.

» Extend this by defining C; = @ for j > m.
» Construct the initial society (So, Fo).
» For j > 1, use C; to obtain (S;, F;) from (S;_1, Fj—1).



EvduﬂoqofSocmﬂes

(So, FO) (517’:1)

S, F.
G G (52, F2)
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Let Cy,..., Cy be a chain partition produced by First-Fit.
Extend this by defining C; = @ for j > m.

Construct the initial society (So, Fo).
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Let C3,..., Cy be a chain partition produced by First-Fit.
Extend this by defining C; = @ for j > m.

Construct the initial society (So, Fo).

For j > 1, use C; to obtain (S;, F;) from (S;_1, Fj_1).
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Key Properties
>S5 2
> If F_1(X, k) = Y and {X, Y} C S}, then F;(X,k) =Y.

> If Fi_1(X,k) =Y and X € §; but Y ¢ 5;, then X picks a
new friend for slot k (or leaves slot k empty) according to the
rules of a replacement scheme.

» The process ends when (S, F,) is generated with S, = &.

» The list (So, Fo),- - -, (Sn, Fn) is an evolution of societies.
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» Consider a group X € S5j_1.
> There are 3 ways that X can transition from S;_; to S;.

Transition Rules

1. If X has nonempty intersection with C;, then X makes an
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Finding a Large Group

Two Parts

1. Construct an initial society and define a replacement scheme
that leads to a long evolution.

2. Show that a long evolution implies some group is large.

> Part 1 exploits that P is (r + s)-free.

» Part 2 is essentially the standard analysis of the Column
Construction Method of Pemmaraju, Raman, and
Varadarajan.
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The Groups in the Initial Society
» Let g be the height of P.

> The adjusted height of y, denoted h(y), is the size of a
longest chain with top element y.

> An element z € P is a y-blocker if there is a chain of size r
with bottom y and top z.

> If P has no y-blocker, then define I(y) = [h(y), q].
» Otherwise define

~

I(y) = |h(y), min{h(z)—1: zisa y—blocker}} .

» Note that always h(y) € I(y).
> Define Xi,..., X, by putting y € X if and only if j € I(y).
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The Groups in the Initial Society (p. 2)
> If P has no y-blocker, then I(y) = [A(y), q].
» Otherwise I(y) = [h(y), min{h(z) — 1: z is a y-blocker}].
> Define X1,..., Xy by putting y € X; if and only if j € I(y).

Proposition
Each set Xy induces a subposet of height at most r — 1.

Proof.

Consider a chain y3 < ... <y, in P.

Note: y, is a yj-blocker.

If y1 € X;, then i € I(y1), and so i < h(y,).
If y, € Xj, then j € I(y,), and so h(y,) < J.
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The Groups in the Initial Society (p. 2)

> If P has no y-blocker, then I(y) = [A(y), q].
» Otherwise I(y) = [h(y), min{h(z) — 1: z is a y-blocker}].
> Define X1,..., Xy by putting y € X; if and only if j € I(y).

Proposition
Each set Xy induces a subposet of height at most r — 1.
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The Groups in the Initial Society (p. 2)
> If P has no y-blocker, then I(y) = [A(y), q].
» Otherwise I(y) = [h(y), min{h(z) — 1: z is a y-blocker}].
> Define X1,..., Xy by putting y € X; if and only if j € I(y).

Proposition
Each set Xy induces a subposet of height at most r — 1.

Proof.
» Consider a chain y; < ... <y, in P.
Yr .
‘ » Note: y, is a y1-blocker.
: > If y1 € X;, then i € I(y1), and so i < h(y,).
y‘1 > If y, € X;, then j € I(y,), and so h(y,) <.
» Therefore y; and y, are not both in X.

> Define So = {X1,..., Xg}.
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Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
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z » Assume that I(y) N1I(z) = @, with
all of I(y) less than all of I(z).
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Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).

Proof.
z » Note: y € X; but y & Xiy1.
» Hence there is a y-blocker y’ with
h(y') =i+ 1.
y/
y



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
z » Note: y € X; but y Q XiJrl.
> IA-lence there is a y-blocker y’ with
h(y") =i+ 1.
> Let Y be a chain of size r with
Y/‘ bottom y and top y’.
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Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).
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z > Also, z € Xj but z & Xj_1.
> Hence h(z) = .



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).

Proof.

z > Also, z € Xj but z & Xj_1.
> Hence h(z) = .
> There; is a chain z; < --- < z such
that h(zx) = k and z = z;.



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).

Proof.
z > Also, z € Xj but z & Xj_1.
> Hence h(z) = .
» There is a chain z; < --- < z such
/ ) that h(z;) = k and z = z;.

> Let 2/ = z4;.



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
‘z > Also, z € Xj but z & Xj_1.
\ T > Hence h(z) = .
‘~ S » There is a chain z; < --- < z such
; |, J that h(z;) = k and z = z;.

v

Let 2/ = Zjy1.
Let Z ={zji41,..., 2}

v



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).

Proof.

z » If some element in Y is at most an
‘ T element in Z,

=

T / J
| ]



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.

z » If some element in Y is at most an
T element in Z,

=i » then transitivity implies y < z.
|
y/ / 2 J
|
r :
J |
|



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
z > If some element in Y is at most an
‘ T element in Z,
CJ—i » then transitivity implies y < z.
| P
| J » Hence Y and Z are disjoint.
! !



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
z » If some element in Y is at most an
‘ T element in Z,
CJ—i » then transitivity implies y < z.
/ i / J » Hence Y and Z are disjoint.
4 | . » If some element in Z is at most an

! element in Y,



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
z > If some element in Y is at most an
! T element in Z,
CJ—i » then transitivity implies y < z.
| P
| J » Hence Y and Z are disjoint.
! !

» If some element in Z is at most an
! element in Y,

‘: > then transitivity implies 2/ < y’.



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
z > If some element in Y is at most an
! T element in Z,
CJ—i » then transitivity implies y < z.
| P
| J » Hence Y and Z are disjoint.
! !

» If some element in Z is at most an
! element in Y,

> then transitivity implies 2/ < y’.

| » But y’ and Z’ are distinct with the

same adjusted height.
O]



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).

Proof.
z » Hence Y U Z induces a copy of
‘ T r+j—1i
CJ—i
L
L
[
roo
J |
|



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and I(z).

Proof.
z » Hence Y U Z induces a copy of
‘ T r+j—i.
S » Therefore j —i < s — 1.
|
oL
|
r :
J |
|



Incomparable Elements are in Nearby Groups

Lemma

If y and z are incomparable, then either I(y) N1(z) # &, or there
are at most s — 2 integers between I(y) and 1(z).

Proof.
z » Hence Y U Z induces a copy of
‘ T r+j—i
=i » Therefore j —i < s—1.
/ i , J » There are at most s — 2 integers
between / and j.
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The Replacement Scheme
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» Recall that each group has t slots for friends, where
t=2(s—1).

» The replacement scheme maintains the invariant:

)

‘The friends of X in (Sj, Fj) are the t groups
closest to X among all that survive to S;.
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The Replacement Scheme

X1 X Xq

» Recall that each group has t slots for friends, where
t=2(s—1).
» The replacement scheme maintains the invariant:

The friends of X in (S;, F;) are the t groups
closest to X among all that survive to S;.
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The Evolution is Long

G
|

So S, S S, S S

Lemma
For each i > 0, we have that Uj>i G C UXeS,- X.

Proof.

> Suppose i > 1 and consider y € C; where j > .
» Find z € C; such that y and z are incomparable.
» By induction, 3Y,Z € S;_1 such that y € Y and z € Z.



The Evolution is Long

| \y
C I Gi
| |
So Sis S; Si1 S; S
[ I(y) | —1L(z) —
Si—l
Lemma

For each i > 0, we have that Uj>i G C UXeS;X-

Proof.

> Suppose i > 1 and consider y € C; where j > .
» Find z € C; such that y and z are incomparable.
» By induction, 3Y,Z € S;_1 such that y € Y and z € Z.



The Evolution is Long

| \y
G |~ C/ |
| |
50 5171 5/ ijl SJ Sn
: I(y) | —1(z) —
Si—l
Y Z
Lemma

For each i > 0, we have that Uj>,- G C UXeS;X-
Proof.

> Suppose i > 1 and consider y € C; where j > .

» Find z € C; such that y and z are incomparable.

» By induction, 3Y,Z € S;_1 such that y € Y and z € Z.
» Choose Y and Z as close as possible in X1, ..., X;.
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The Evolution is Long

| \y
C I Gi
| |
So Sis S; Si1 S; S
[ I(y) | —1L(z) —
Si—l
Y Xk 4
Lemma

For each i > 0, we have that Uj>,- G C UXeS;X-

Proof.

» If X is a group that survives to S;_; and is between Y and Z
in X1,...,Xq, then k is between I(y) and I(z).

» Hence at most s — 2 groups in S;_; are between Y and Z.
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The Evolution is Long

| \y
C I Gi
| |
So Sis S; Si1 S; S
[ I(y) | —1L(z) —
Si—l
Y Xk 4
Lemma

For each i > 0, we have that Uj>,- G C UXeS;X-

Proof.

» If Y = Z, then Y makes an a-transition to S;.
» Otherwise, Y lists Z as a friend in (S;_1, Fi_1).

» Hence Y makes an a-transition or a S-transition to S;.



Part 1 and Part 2

Lemma (Part 1)

If Gi,...,Cy is a chain partition produced by First-Fit and
(So, Fo), - --,(Sn, Fn) is the resulting evolution, then n > m + 2.



Part 1 and Part 2

Lemma (Part 1)

If Gi,...,Cy is a chain partition produced by First-Fit and
(So, Fo), - --,(Sn, Fn) is the resulting evolution, then n > m + 2.

Lemma (Part 2)

Let Cy,...,Cy be a chain partition produced by First-Fit and let
(So, Fo), - --,(Sn, Fn) be the resulting evolution. If X € S,_1, then
|X| > (n—2)/4t.
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Theorem

If r,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

Proof.
» Let (q,..., C, be a First-Fit chain partition.
> Let (So, Fo),---,(Sn, Fn) be the resulting evolution.
> let X € S,_1.

» Since X has height at most r — 1, we have w > | X|/(r — 1).
» By Part 2, |X| > (n—2)/(4t), so w > (n—2)/(4t(r — 1)).



Putting the Pieces Together

Theorem

If r,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

Proof.
» Let (q,..., C, be a First-Fit chain partition.
> Let (So, Fo),---,(Sn, Fn) be the resulting evolution.
> let X € S,_1.
» Since X has height at most r — 1, we have w > | X|/(r — 1).
» By Part 2, |X| > (n—2)/(4t), so w > (n—2)/(4t(r — 1)).
» By Part 1, n > m+2, sow > m/(4t(r — 1)).



Putting the Pieces Together

Theorem

If r,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

Proof.
» Let (q,..., C, be a First-Fit chain partition.
Let (So, Fo), - - -, (Sn, Fn) be the resulting evolution.
Let X €S5,_1.
Since X has height at most r — 1, we have w > |X|/(r — 1).
By Part 2, | X| > (n—2)/(4t), so w > (n—2)/(4t(r — 1)).
By Part 1, n > m+2, so w > m/(4t(r — 1)).
Since t = 2(s — 1), we have w > m/(8(s — 1)(r — 1)).

v
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Open Problems

Theorem

Ifr,s > 2 and P is an (r + s)-free poset of width w, then First-Fit
partitions P into at most 8(r — 1)(s — 1)w chains.

» Improve the constant 8(r — 1)(s — 1) in the upper bound.
> Give lower bounds when (r,s) # (2,2).

Question

For which posets @ is there a function f such that First-Fit
partitions a Q-free poset of width w into at most f(w) chains?

» Note: Kierstead's example shows that @ must have width 2.



