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» The n-dimensional Boolean lattice is the containment order
on 201

Definition

» Given disjoint sets Xp, X1, ..., Xy, with X; # @ for i > 1, the
generated d-dimensional Boolean algebra is the family of all
sets formed by the union of Xy with O or more members of

{X1,..., X4}
» Such a family of 29 sets forms a copy of By.

> A family is By-free if it does not contain a copy of By.
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» What is the largest size of a By-free subfamily of 2["1?
> Let b(n,d) = max {|F|: F C 2"l and F is By-free} .

Prior Work

» [Gunderson—RodI-Sidorenko 1999] For each d, there exists ¢4
such that for n sufficiently large

n_2d+(1172(1—0(1)) . 2n S b(n7d) S cq - n_2% X 2n'
» Here, cg = (10d)9(1 + o(1)).
Theorem

b(n,d) <50 - e 2m,
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A useful sequence of functions

Definition

» Let ag(n) =0.

» For d > 1, define ay(n) = % +1/2nag—1(n) + %.

Facts
> For d > 1, the bounds (2n)' ™27 < ag(n) < (4n)172% h
> For fixed d, we have ag(n) = (1 + o(1))(2n)* 27,

» For d > 1, we have (O‘dz(”))/n = ag-1(n).
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Szemerédi's Cube Lemma

Lemma (Szemerédi 1969)
If AC [0, n] and |A| > aq4(n), then A contains an affine d-cube.

2 2
» Using aq(n) < (4n)1727 < 4n'"% we obtain:

Corollary
2
If AC [0, n] and |A| > 4n' "3 then A contains an affine d-cube.



The Lubell Function
[n]

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.

»E[X]:Z(},)

AcF \|A|




The Lubell Function

» Given F C 201 et X be the
number of times a random full
chain meets F.

- EX =Y e

AeF (lAl)

» The Lubell function of F, denoted

hn(F), is E[X].




The Lubell Function

Given F C 201 et X be the
number of times a random full
chain meets F.
1

=X= 2

AcF \|A|
The Lubell function of F, denoted
ha(F), is E[X].
Think of h,(F) as a measure of the
size of F, with 0 < hp(F) < n—+ 1.
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The Second Moment

\ [n]

X . . .
> (%) also gives useful information.

» For each ordered pair (A, B) of distinct

elements in 7 with A C B, let Y g be the
indicator r.v. for the full chain containing

A and B.

E[(5)] =D E[Yas]
A,B
1

AB (\A\V\B\*rAlvnlel)

- L Z hnfk(]:S)z

= © e

where Fs is the set of all A € F that are
disjoint from S with AU S € F.
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Proof.

> Let F = Uea ([Z])'

» Note F C 2I" and h,(F) = |A| > aq(n).

» By the theorem: F contains a copy of By generated by
disjoint sets Xp, X1,..., Xy4.

» Hence A contains an affine d-cube generated by xp, ..., X4
with x; = |X,|
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Extension of Szemerédi's Cube Lemma

Theorem
If F C 2l and h,(F) > aq(n), then F contains a copy of By.

Corollary (Szemerédi's Cube Lemma)
If AC [0,n] and |A| > ag(n), then A contains an affine d-cube.

Question
» Is it true that among all By-free families F C 2 that
maximize hp(F), at least one is the union of level sets?
» If so, then both extremal problems are equivalent.
» Sperner's Theorem: yes for d = 1.
» Open for d > 2.
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Turan Results

Theorem
If F C 2l and hn(F) > agq(n), then F contains a copy of By.

Corollary
2
If F C 2l and hn(F) > 4n1_27’, then F contains a copy of By.

» Partitioning 2[") into consecutive segments of \/n levels and
applying an averaging argument yields:

Theorem
If F C 27 and | F| > 50n=1/2" . 2", then F contains a copy of By.
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» Let r(n, d) be the minimum number of parts needed.

Prior Work
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Thank You.
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